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ABSTRACT 

Neuron birth and death are two contradictory processes, yet serving the same purpose of the 

formation of the brain. They coexist during brain development, when cytoarchitecture and 

synaptic contacts are progressively established. It is the highly programmed interplay between 

these two processes that results in the making of a mature, complex-wired, functional brain. 

Neurogenesis is the process that begins with the birth of naïve new neurons, which are gradually 

specified to their prospective cell fate, translocate through migratory streams to the brain area 

they are destined for and terminally differentiate into mature neurons that integrate into 

neuronal networks with sophisticated functions. This is an ongoing process until adulthood, 

when it mediates brain neuroplasticity. Neuron death is the process through which the fine 

sculpting and modeling of the brain is achieved. It serves to adjust final neuron numbers, 

exerting quality control on neurons that birth has generated or overproduced. It additionally 

corrects early wiring and performs systems matching by negatively selecting neurons that fail 

to gain neurotransmitter-mediated neuronal activity or receive neurotrophic support for 

maintenance and function. It is also a means by which organizing centers and transient 

structures are removed early in morphogenesis. Both processes are evolutionary conserved, 

genetically programmed and orchestrated by the same signaling factors regulating the cell 

cycle, neuronal activity/neurotransmitter action and neurotrophic support. This review 

summarizes and highlights recent knowledge on birth and death of neurons, the two mutually 

dependent contributors to the formation of the highly evolved mammalian brain. 

 

Birth and Death, 

rumor has it, 
are martyr lovers. 

Their offspring, 

unplundered Dreams or Lifers. 

 
  by G.C.P. 

 

 
 



Introduction 

Birth and death, two hallmark events of unsurpassed biological importance, represent 

not only the beginning and the end of all living units, but also the tools for the formation and 

shaping of the functioning brain. During embryonic development, multipotent neural stem cells 

(NSCs) undergo symmetric or asymmetric divisions to give rise to daughter cells that are either 

identical to their mother cells or destined to follow specific differentiation pathways leading to 

distinct cellular lineages, neuronal or glial. Programmed survival and death of these early 

generated cells mark the morphological and functional characteristics of the developing brain. 

Further sculpting of the functioning brain continues, but to a more limited extent, in the 

postnatal period. In the early post-embryonic and adult brain, neurogenesis appears to be a 

rather marginal phenomenon, limited to only few brain regions, with questionable implications, 

whereas gradually restricted natural neuronal death has been observed in a number of brain 

regions. Pathological activation of the death machinery has been regarded as a pathway leading 

to structural abnormalities and functional disabilities. 

The subject domain of birth and death of brain neurons throughout the life span of 

mammalian species is unlimited and has attracted considerable attention of neuroscientists over 

the years. Exhaustive research from pioneering studies has provided a tremendous amount of 

evidence that has shed light into the generation of neuronal lineages, the development of brain 

cytoarchitecture and the establishment of neuronal circuitry, however, several aspects of this 

complex subject remain to be elucidated. 

In the present review we summarize insights from state-of-the-art investigations on the 

basic principles of neuron birth and death in the mammalian brain, highlighting the issue of 

these interrelated but often opposing processes during development and neuroplasticity of two 

telencephalic brain areas, the neocortex and the hippocampus. Both areas play a fundamental 

role in mammalian evolution and show specific features with respect to neuron birth and death 

during development and maturity. The neocortex of primate brain is involved in higher 

cognitive functions and represents the evolutionary step of acquiring a highly intricate neuronal 

circuitry. Accordingly, the hippocampus is the principal brain structure involved in learning 

and memory, with evolutionary increasing capacity of cognitive flexibility.  

 

Birth of neurons in the mammalian brain during prenatal and early postnatal 

development 

The blueprints of the mammalian central nervous system (CNS) appear in the early 

embryo, during gastrulation, when part of the ectoderm is induced by the notochord to form 

neuroectoderm. Neuroectodermal cells located antero-dorsally form the neural plate, a 

homogeneous neuroepithelial layer. Cells in this layer display high mitotic activity and show 

specific gene expression patterns (Vieira et al., 2010). The mitoses are characterized by 

interkinetic nuclear migration, which makes the neuroepithelium a pseudostratified epithelial 

layer. The majority of neurons in the mammalian CNS are generated during embryonic and 

early postnatal development and originate from the initial pool of NSCs within the 

neuroepithelial layer. The birth of new neurons which are incorporated into neural circuits is 

termed neurogenesis. Cell fate determination is already set in the neural plate for the formation 

of the brain and spinal cord. Moreover, the fate maps of the forebrain, midbrain, hindbrain, and 

spinal cord are specified rostro-caudally in the neural plate (Wilson and Houart, 2004). This 



early patterning is regulated by various inductive signals, beginning with neuroectoderm 

induction mediated by a key signaling molecule of the Hedgehog family, the Sonic hedgehog 

(Shh) (Ozair et al., 2013). Many of the genetic factors that specify the neuroectoderm and the 

subsequent stages of neural morphogenesis are highly conserved among species.  

Primary neurulation is the first part of a process which begins with neural plate 

formation, proceeds with its bending to form the neural groove; and is completed with the 

closure of the neural groove to form the neural tube (Smith and Schoenwolf, 1997). Neural tube 

closure is a complex event regulated by interactions between genetic and environmental factors. 

The wall lining the neural tube is three-layered, with the innermost layer, being the primordium 

of all layers, termed germinal or ventricular zone (VZ). At the time of neural tube closure, its 

rostral end begins to expand to form the three primary brain vesicles, the forebrain, midbrain 

and hindbrain. Subsequently, the forebrain divides into the telencephalon, the diencepahlon and 

the hypothalamus. Commencing in the early 1990s, a series of detailed analyses by Puelles and 

his colleagues has put forward the “prosomeric model” of brain development according to 

which the forebrain at this stage is divided into spatially organized histogenic domains that 

correspond to specific zones of neural progenitors and morphogenetic gene expression patterns 

(reviewed in Vieira et al., 2010). 

 

Neurogenesis in the mammalian telencephalon 

The telencephalon initially appears as a paired set of forebrain pouches at the rostral 

end of the neural tube. It contains two germinal zones, the dorsal and the ventral VZ, termed as 

pallium and subpallium, respectively. The embryonic telencephalic subpallium is subdivided 

into the medial, lateral and caudal ganglionic eminence and anterior entopeduncular/preoptic 

domains. Cells in the germinal VZs proliferate giving rise to daughter cells; hence these regions 

have also been termed the “proliferative zones” and comprise both neuronal and glial cell 

lines. Cells born in the pallium will give rise to cortical projection neurons and neurons of the 

olfactory bulb, whilst cells from the subpallium will become cortical interneurons and neurons 

of the hippocampus, the basal ganglia, the septum and the amygdala. These regions express 

homeobox transcription factors that regulate forebrain development (Hernández-Miranda et al., 

2010).   

The telencephalic VZ is composed of polarized neuroepithelial cells that continuously 

proliferate to form the cerebral vesicles. They first undergo symmetric, proliferative divisions 

for clonal expansion and establish the initial NSC pool. Once the phase of self-renewal 

divisions is complete, neuroepithelial cells proceed with asymmetric, neurogenic divisions  to 

give rise to neuroepithelial cells and polarized apical radial glial cells (aRGCs) which are 

defined as the primary NSCs, as their progeny constitute all cell types in the CNS (Götz and 

Huttner, 2005). aRGCs also constitute the source of adult neurogenesis in neurogenic niches.  

  Embryonic aRGCs increase their numbers in the VZ dividing symmetrically and at the 

peak phase of neurogenesis they undergo either direct neurogenesis, through asymmetrical 

neurogenic divisions to produce immature postmitotic neurons within the VZ, or indirect 

neurogenesis to generate basal progenitors (BPs) that are born at the surface of the VZ and then 

migrate to its basal layer. The continuous cell division that BPs undergo results in the 

formation of a second proliferative zone that has been termed the subventricular zone 



(SVZ). Its outer section shows the highest proliferative capacity in primates, especially 

humans. The BPs comprise basal radial glia-like cells (bRGCs), and intermediate neural 

progenitors (IPs), which in turn proliferate in the SVZ to produce neurons (Taverna et al., 2014; 

Mira and Morante, 2020). It is generally accepted that the higher the phylogenetic order of 

mammalian species, the greater the diversity of neural progenitor cell populations. In 

lissencephalic mammals, such as rodents, IPs divide symmetrically for straightforward neuron 

production. In gyrencephalic primates, in which indirect neurogenesis is evolutionary selected, 

IPs ultimately give rise to a larger neuronal population, as they undergo a number of 

proliferative divisions before they differentiate. Additionally, the proportion of the bRGCs is 

higher in the latter species, where they produce IPs and neurons, at the same time they replenish 

their cell population and additionally co-express transcription factor paired box 6 (Pax6) and 

the T-box transcription factor Tbr2. This amplification process again adds to the final neuron 

number of the cerebral cortex (Uzquiano et al., 2018; Villalba et al., 2021).  Progenitor cells 

that undergo neurogenic divisions have a longer cell cycle than cells that undergo proliferative 

divisions (Götz and Huttner, 2005). Several signaling pathways have been implicated in the 

orchestrating of these processes that are related to the cell cycle. The switch of symmetric, 

proliferative divisions to asymmetric, neurogenic ones is regulated by the evolutionary 

conserved Notch pathway, that balances stem cell proliferation and differentiation in the 

developing and adult brain (Engler et al., 2018) and a plethora of other signaling pathways and 

cell intrinsic factors (Villalba et al., 2021). Studies in transgenic mice have shown that Notch 

signaling is differentially regulated in NSCs and IPs (Mizutani et al., 2007). Notch activation 

imposes the stem cell-identity upon aRGCs, whereas Notch inhibition induces aRGCs for IPs 

production. The retention of the self-renewal-proliferative state is a neurogenic amplifying 

process. Mammalian brain development is also regulated by T-box genes. The Tbr1 sub-family 

is important in development of the cerebral cortex, olfactory bulbs, and cerebellum. In a study 

of transgenic mice lacking the Tbr2 sub-family, deficient Notch signaling induced a RGCs 

response to increase direct neurogenesis that led to an earlier depletion of their initial pool 

(Mihalas and Hevner, 2017). The Wingless (Wnt) pathway stimulates initial aRGCs division, 

whereas at later stages it regulates neurogenic fate. Sox1 transcription factor sets the timer for 

cell cycle exit by suppressing neurogenic divisions (Elkouris et al., 2011). Indirect 

neurogenesis, preferentially induced in phylogenetically higher mammals, is manifested by a 

precisely regulated, complex interplay of signaling factors, including Shh, Notch, Robo 

receptor signaling and Pax6 that regulate aRGCs’ division mode and progeny fate (Villalba et 

al., 2021).  

The duration of embryonic/early postnatal neurogenesis varies among mammalian 

species. It lasts longer in gyrencephalic mammals compared to lissencephalic ones, being 

maximum in humans, where it lasts approximately three months. This reflects the higher 

diversity of progenitor cells, contributing to the evolutionary more intricate neuronal circuitry 

in primate brain. 

 

Neurogenesis in the mammalian neocortex 

A plethora of studies over the past decades have unraveled the intriguing issue of 

neocortical neurogenesis. Early autoradiographic studies have suggested that the earlier born 

cells in the VZ are segregated in vertical columns whereas the later born populations are 

organized in two horizontal bands and this lamination corresponds to alternate fast and 



slow cycling stem cell populations (Altman and Bayer, 1990). It is now well documented 

that the production of cortical neurons occurs through indirect neurogenesis in the SVZ via 

neuronal amplification which is most prominent in primates. The presumptive neocortex 

begins to form when newborn neurons that have exited the cell cycle in the SVZ migrate 

outwards to the cerebral vesicles, to form the preplate. This contains the earliest generated 

cortical neurons. When later born neural progenitors become postmitotic, they migrate out of 

the SVZ and split the preplate into the marginal zone and the subplate, which is separated from 

the VZ by the intermediate zone (IZ). Cortical layers are then formed in an "inside-out" pattern. 

According to this, the earliest born neurons reside at the deeper layers of the cortex, whilst 

neurons generated at later stages occupy more superficial layers, having migrated through the 

deeper layers to reach their final destination. This appears to be a common feature of 

mammalian cortical development (Parnavelas et al., 2002). Clonal analysis during mouse 

corticogenesis demonstrated three types of early IPs clonal differentiation: the first occurred 

through rapid terminal divisions following a couple of cell cycle rounds to produce 

infragranular-layer neurons; the second through asymmetric divisions with different laminar 

fates of daughter cells to produce neurons in multiple layers and the third through divisions 

with delayed terminal differentiation to produce supragranular-layer neurons (Mihalas and 

Hevner, 2018). A relatively broad population of NSCs persists to adulthood, remaining in the 

SVZ as resident cells, with the transcriptomic identity of quiescent NSCs, until their neurogenic 

potential is re-activated during adult neurogenesis. This makes the SVZ the principal 

neurogenic niche in the adult brain. 

The morphology and organization of neurons in the mammalian cerebral cortex has 

been extensively investigated starting in 1911, with the work of Ramon y Cajal. Since then, a 

tremendous amount of evidence from pioneering studies has shed light into the development, 

neuron lineages and establishment of connectivity. Cortical neurons are classified into two 

broad groups: pyramidal and nonpyramidal. These neurons show characteristic morphological 

and functional features. Pyramidal cells are projection neurons that use the excitatory amino 

acid glutamate as a neurotransmitter. Nonpyramidal cells, are the local circuit cortical 

interneurons, that use the inhibitory neurotransmitter GABA (Parnavelas et al., 1989).  Lineage 

studies have suggested that the telencephalic SVZ which is the source of cortical neurons, 

contains a heterogenous population of BPs with different cell fates, determined by different 

mechanisms. Pyramidal and nonpyramidal neurons originate from progenitors in different 

regions, the pallium and the subpallium, respectively, then follow different migratory paths, 

radial or tangential, on their way to the primordial cortex. aRGCs have a dual function, the first 

serving the role of multipotent primary NSCs and the second providing scaffolding for guided 

neuronal migration. Strikingly, aRGCs have been shown to have a neurogenic potential, being 

the precursors of cortical pyramidal neurons. (Rakic, 2003). Neurogenic progenitors of 

pyramidal cells acquire initial positional information before they become postmitotic, but the 

acquisition of laminar fate specification is attributed to newborn neurons. In primates, these 

progenitors comprise IPs, as well as bRGCs. A cascade of the transcription factors Pax6, 

Neurogenin 2, Tbr2, Neuro D and Tbr1 is expressed at sequential stages from NSCs 

proliferation to pyramidal neuron production. The IPs have a distinct molecular profile, 

expressing the Tbr2 transcription factor. Studies on Tbr2 conditional mutant mice have shown 

that Tbr2 expression promotes the transition from IPs to neurons and the temporal order of 

cortical laminar identity acquisition. Pyramidal postmitotic neurons express the Tbr1 subfamily 

of T-box genes (Mihalas and Hevner, 2017). Newly postmitotic cells that will become cortical 

interneurons express the LIM homeobox gene Lhx6 and cadherin-8 (Cdh8) already within the 



subpallial medial ganglionic eminence. Mice lacking Cdh8 displayed a significant increase in 

the number of cortical interneurons and in vitro studies confirmed that knockdown of Cdh8 

induced proliferation of neural progenitors, whereas over expression of Cdh8 resulted in 

decreased proliferation (Memi et al., 2019). Interneuron progenitors also express the neuropilin 

receptors Nrp1 and Nrp2 which mediate their response to semaphorin (Sema) 3 ligands. Studies 

in semaphorin co-receptor PlexinA1 knockout mice showed a lower number of mature cortical 

interneurons, that was attributed to reduced proliferation of progenitor cells, due to their altered 

morphology and adhesion properties on the SVZ wall (Andrews et al. 2016). Further 

investigations in Nrp1 and Sema knockout mice demonstrated a size reduction of the NSCs 

pool in the subpallial medial ganglionic eminence that led to a decrease in the number of cortical 

interneurons (Andrews et al. 2017). Pyramidal postmigratory neurons originating from the 

same clone end up spatially related, whereas nonpyramidal neurons are dispersed as single 

isolated cells or pairs of clonally related neurons in the presumptive neocortex. (Parnavelas et 

al., 2002). The varying sizes of early IPs clones relate to the different rates between cell birth 

and death, while their laminar fates depend on neuron birthdates (Mihalas and Hevner, 2018). 

 

Neurogenesis in the mammalian hippocampus 

The hippocampal neuroepithelium consists of three neurogenic domains:-the Ammonic 

neuroepithelium giving rise to the pyramidal neurons of Ammon’s horn, the primary dentate 

neuroepithelium which is the source of the granule neurons of the dentate gyrus (DG) and the 

fimbrial glioepithelium-where glial cells of the fimbria are produced. In rodents, the Ammonic 

pyramidal neurons are born prenatally, whereas the birthdates of the majority of DG granule 

cells are postnatal (Altman and Bayer, 1990). The DG of the hippocampus is a key structure, 

exerting a central control on hippocampal functions. Along with the SVZ, the subgranular zone 

(SGZ) of the DG is a neurogenic germinal zone that persists into adulthood. During early 

neurogenesis, a population of neuroepithelial cells migrate to the SGZ and become resident 

quiescent NSCs with a neurogenic potential throughout postnatal life and in adulthood, 

reflecting a lifelong protracted development (Mira and Morante, 2020). It is, therefore, within 

the scope of this review to emphasize on neurogenesis in this area. 

The development of the DG is a temporally extended period. Neurogenesis begins at 

the primordial dentate neuroepithelium where NSCs proliferate to build up in clusters of 

progenitor cells in the SVZ. These proliferating cells form a new germinal zone, the neurogenic 

SGZ of the DG. The SGZ has been shown to be the source of the postnatally born granule cells 

in various mammalian species. Proliferative progenitors of granule cells then leave the SGZ 

and proceed along the dentate migratory stream to the primitive dentate structure (Altman and 

Bayer, 1990). These belong to two populations with different spatial distribution of their clonal 

origin in the SVZ, birthdates, migration patterns and final destination in the primordial DG. 

The cascade of transcription factors is similar to that expressed in neocortical neuron 

development. Proliferating neuroepithelial and IPs express the transcription factor Sox2, which 

regulates their proliferative divisions and neurogenic potential. IPs also express the 

transcription factor Tbr2 whereas postmitotic granule neurons express the transcription factors 

Prox1 and Tbr1, that control the process of their differentiation (Seki et al., 2014; Mihalas and 

Hevner, 2017).  



In rodents, most granule neurons are generated in the first postnatal week and 

maturation of the DG is completed by the end of the second postnatal week. Progenitor cells 

first give rise to neurons destined to populate the polymorphic cell layer (PL) of the DG. The 

molecular cell layer (ML) is the next to be formed by cells that do not exit the cell cycle before 

the end of the first postnatal week. The latest born neurons give rise to the granule cell layer 

(GCL) and their birthdate is mainly a postnatal event. The PL and ML follow the neocortical 

"inside-out" pattern of formation, whereas the GCL is built by immature neurons in an "outside-

in" sequential mode. Along its septo-temporal axis, the DG follows an “edge to center” pattern 

of formation as granule cells arrive earlier at the temporal and then at the septal border than 

cells in the middle part (Altman and Bayer, 1990).  

During the past decades, a plethora of studies have provided unequivocal evidence that 

mammalian species maintain the capacity of producing new neurons from multipotent 

quiescent NSCs during adulthood. Cell lineage studies have proposed the “sequential”, the “set-

aside” and the “continuous” model for neurogenesis in the maturing and adult brain in the two 

main neurogenic niches, the SVZ and the hippocampal SGZ. The latter model emerged from a 

recent study showing that in the mouse, DG granule neurons originate continuously and 

exclusively from a common progenitor pool in the developing and adult brain. This led to the 

assumption that adult neurogenesis may be regarded as “a life-long extension of development” 

that underlies the maintenance of hippocampal plasticity (Berg et al., 2019). The issue of 

whether neurogenesis in the adult brain is a distinct cellular process, or reflects an ongoing 

protraction of development remains to be resolved. In the context of eliminating the borders 

between developmental and adult neurogenesis, as suggested by Berg and colleagues (Berg et 

al., 2019), this review will next highlight the process of neurogenesis in the mature brain. 

 

Birth of neurons in the adult mammalian brain 

Neurogenic niches of the adult mammalian brain 

Since the preliminary investigations on the occurrence of neurogenesis in the adult 

mammalian brain in the early 1960s, an abundance of studies, including these of our research 

team, using thymidine analog labeling, retroviral lineage, transcriptome analysis and single-

cell profiling have provided strong evidence that the SVZ lining the lateral ventricles (LV) and 

the SGZ of the hippocampal DG are the principal neurogenic niches of the adult brain, showing 

homology across mammalian species (Fig. 1). Quiescent NSCs of embryonic origin that reside 

in the postnatal SVZ and SGZ become activated and give rise to new neurons and glia 

throughout adult life, although the rate and extent of neurogenesis is significantly reduced with 

increasing age.  

Various environmentally-derived signals, as well as intrinsic factors including gene 

expression and epigenetic reprogramming, activate the neurogenic potential of the resident 

quiescent NSCs in the neurogenic niches of the adult brain and support the maturation and 

functional integration of their progenies. Both niches display gap junction-mediated NSCs 

contacts, contain an extracellular matrix rich is neurogenic molecules, a high number of 

astrocytes that exert a positive or negative regulation on the neurogenic activation of NSCs, a 

rich network of vasculature that is contacted by NSCs and lie in close proximity with 

neurogenesis-supporting areas (i.e. the ependymal cell layer between the SVZ and the LV). 



Additionally, the same morphogens and transcription factor cascades that guide neurogenic and 

proliferative divisions and cell fate specification during embryonic development also regulate 

adult neurogenesis. Despite their lack of synapses, NSCs’ neurogenic potential is also affected 

by neurotransmitters. For example, GABA and dopamine inhibit activation of NSCs, whereas 

serotonin and acetylcholine have the opposite effect. The sources of newly produced neurons 

are multipotent NSCs, pluripotent neural progenitor cells, or even epigenetic cell fate 

reprogrammed astrocytes (Bond et al., 2015; Obernier and Alvarez-Buylla, 2019; Griffiths et 

al., 2020).  

The existence of novel neurogenic regions in the adult brain, other than the SVZ and 

SGZ, is nowadays under thorough investigation. Various areas of the adult brain, that are 

massively impaired in neurodegenerative disorders, have been examined for their possible 

neurogenic potential and populations of adult-born neurons were found to exist in the 

hypothalamus, striatum, substantia nigra, cerebral cortex and amygdala. Lineage-tracing 

studies suggested that tanycytes, a population of specialized RGCs that reside at the wall of the 

third ventricle and at the median eminence of the hypothalamus comprise a population of 

potential NSCs. Τhe presence of neuroblasts in the adult striatum was considered as an indicator 

of the local ongoing neurogenesis. However, it was argued that adult-born neurons localized in 

the human striatum may originate from proliferating NSCs in the adjacent SVZ and then 

migrate to form striatal interneurons. Moreover, it has been suggested that neurogenesis in these 

brain regions is triggered by pathological processes such as stroke/ischemia and 

neurodegenerative disorders. (Jurkowski et al., 2020). The question whether the above 

mentioned brain areas have the ability to generate new neurons in the healthy adult brain or 

represent migrating sites of neuroblasts born in the principal niches, mainly under pathological 

conditions, awaits elucidation.  

Neurogenesis in the SVZ of the adult mammalian brain 

The SVZ is the major neurogenic germinal zone in the adult mammalian brain, as it 

hosts the broader pool of NSCs. Recent studies using large-scale single-cell profiling, 

demonstrated that adult NSCs in the SVZ comprise a) the RGCs with astrocytic features, that 

display regional specification related to a distinct lineage potency for either neuron, or glial cell 

production and b) a subpopulation of B progenitors (B1 cells), derived from embryonic aRGCs, 

and capable of both self-renewal and neurogenic divisions. Both cell types showed a 

heterogenous neurogenic fate potential. These data confirmed and extended previous 

transcriptome analysis that suggested regional-specific differences in lineage commitment at 

the molecular level, in this area. With respect to the activity state, the SVZ contains two 

populations of NSCs, the quiescent (qNSCs) and the actively proliferating (aNSCs). According 

to the “set aside” model for neurogenesis, once generated prenatally, NSCs destined for the 

adult SVZ pool switch to a quiescent state until adulthood, and do not produce neurons. The 

neurogenic aNSCs give rise to transient amplifying IPs, also known as C cells, which are the 

most actively dividing cells of the SVZ. They express nestin and are localized in clusters along 

the LV wall. C cells undergo amplification divisions and then produce immature neurons, also 

named A cells that express the polysialylated neural adhesion cell molecule (PSA-NCAM) and 

beta-tubulin (Tuj-1) and migrate through the rostral migratory stream to become different 

subtypes of olfactory bulb interneurons (Mizrak et al., 2019). In the adult brain, factors that 

control the symmetric and asymmetric divisions of aNSCs and their subsequent differentiation, 

having a different origin from those acting during development, are derived from the local 

cellular microenvironment, the cerebrospinal fluid, the local blood vessels, and 



neurotransmitter input from adjacent or remote brain areas. Although neurogenesis in the adult 

SVZ is driven by a heterogenous NSCs population and is regulated by adult-specific 

mechanisms, it has been proposed that regional specification is pre-established in embryonic 

development and is inherited to the adult NSCs (Obernier and Alvarez-Buylla, 2019). 

 

Neurogenesis in the SGZ of the adult mammalian brain 

Ongoing neurogenesis in the SGZ of the adult hippocampus has gained increased 

attention due to its association with neuroplasticity-mediated functions in healthy and 

pathological brain. According to the recently proposed “continuous” model for neurogenesis, 

in the developing and adult brain, new neurons of the DG originate continuously and solely 

from a common neural progenitor population in the germinal SGZ, arising from a population 

of neuroepithelial cells that have migrated to the SGZ since early neurogenesis, divide until the 

DG is formed, then they acquire quiescent radial glia-like (RGL) features postnatally. This is 

different from the “set aside” model of neurogenesis that occurs in the SVZ (Berg et al., 2019). 

In the SGZ, RGL cells express the transcription factors Sox2 and Pax6 as well as the astrocytic 

cell marker GFAP. Upon activation, they down regulate niche-ligand receptors, as well as 

downstream signaling factors and divide symmetrically or asymmetrically to give rise to 

progenitors of either the neurogenic or the astogliogenic lineage and at the same time, to self-

renew and replenish their initial pool, avoiding their rapid deforestation. The transcription 

factor cascade that characterizes early neurogenesis is maintained in the adult (Bond et al., 

2015; Mihalas and Hevner, 2017). From birth to adulthood, dentate neural progenitors display 

downregulation of cell cycle-gene expression, transcriptional and translational adjustment and 

upregulation of gene expression involved in processes related to cell surface signaling, 

oxidation reduction, and lipid metabolism (Berg et al., 2019).  

Using a combination of the thymidine analogue 5-bromo-2'-deoxyuridine (BrdU) with 

multiple cell-specific markers, our research team undertook a detailed investigation on the fate 

of adult-born neurons in the rat DG, from their birth to their full maturation (Bekiari et al., 

2015a) (Fig. 2). Neural progenitors, that originate from the RGL NSCs, continue to express 

markers of the radial glial cell lineage (Sox2, Brain lipid-binding protein/ BLBP) and 

progressively become positive to markers and transcription factors of the neuronal lineage 

(nestin, doublecortin/ DCX, PSA-NCAM, neuronal differentiation factor D/ NeuroD, Musashi-

1 and Tbr2 transcription factor), while they lose their ability for proliferation. Newborn neurons 

during their early immature state are still immunoreactive for DCX, PSA-NCAM and NeuroD 

and from the third post-mitotic day they start to express the neuronal marker neuronal nuclei 

(NeuN), while about 3 weeks post-mitosis they also express calbindin. All calbindin-containing 

mature granule cells are immunoreactive for the N-methyl-D-aspartate acid (NMDA) receptor 

subunit R1 (NMDA R1) and for the α-amino-3-hydroxy-methyl-4-isoxazolepropionic acid 

(AMPA) receptor R2 subunit (GluR2). Although the calcium binding protein calretinin is 

expressed in immature neurons of the adult murine DG, our findings revealed that newborn 

neurons of the adult rat and canine DG were negative for calretinin, at all time-points examined, 

from day 2 until day 30 postnatally, which is consistent with previous findings in non-human 

primates (Bekiari et al., 2015a; 2020).  

 



Neurogenesis along the septo-temporal axis of the DG of the adult mammalian brain 

Hippocampal DG is not a homogeneous structure along its septo-temporal axis. There 

are reports on variations in embryonic development, cytoarchitecture, gene expression, 

neurochemistry and connectivity along the DG septo-temporal axis that lead to the functional 

discrimination of the two DG poles (reviewed by Bekiari et al., 2015b) and may be responsible 

for differences in the ongoing neurogenesis process. 

The quiescent or the proliferative state of NSCs in the SGZ of the adult hippocampus 

was found to be affected by both blood- and endothelial cell-derived factors of the rich and 

highly organized local vasculature. Vascular endothelial growth factor supports NSCs 

proliferation, whereas neurotrophin 3 acts in favor of quiescence (Bond et al., 2015). Members 

of our research group demonstrated a septo-temporal heterogeneity of the vascular network, 

with the septal DG displaying a higher capillary density. compared to temporal DG (Grivas et 

al., 2003). Taken together, these data suggest a possible differential regulation of neurogenesis 

between the septal and temporal poles of the DG. 

Evaluation of higher numbers of newborn BrdU+ cells in the septal part of the adult DG 

was indicative of higher levels of neurogenesis in this area (Snyder et al., 2012). However, 

when we performed a parallel stereological analysis of the newborn BrdU+ cells and the total 

granule cell populations of the two dentate parts in the rat hippocampus we found an equal 

neurogenic potential of the septal and temporal part (Bekiari et al., 2015a). In the adult canine 

DG, however, similar stereological counting revealed an increased neurogenic potential of the 

septal DG part, which was attributed to the higher number of locally dividing radial glia-like 

NSCs (Bekiari et al., 2020). In both mammalian species studied, the developmentally ‘older’ 

temporal DG part showed an increased potential for viability of newborn neurons, achieving a 

balance between the birth rate of new-neurons and their accession into the local neuronal 

circuits.  

Adult-born neurons of the septal DG were shown to acquire a more mature neuronal 

phenotype earlier (Snyder et al., 2012). Electrophysiological studies showed the rapid loss of 

immature neuronal properties, while immediate-early genes (Arc) expression profiles revealed 

an earlier neuronal activity of the septal neurons. Our marker expression studies support this 

notion by showing that newborn neurons of the septal DG showed an earlier expression of 

neuronal markers (DCX, NeuN) and an earlier acquisition of glutamate receptors (NMDA R1 

and GluR2), in both the rat and canine DG (Bekiari et al., 2015a; Bekiari et al., 2020). Notably, 

there was a profound delay in the maturation time of adult-born neurons of the canine DG 

compared to the rat DG, which was anticipated by similar findings in other gyrencephalic 

species, such as the sheep and non-human primates.  

A region-specific effect on the functional outcome of adult-born neurons has also been 

documented. Following the functional segregation of the septal and temporal DG part, newborn 

neurons of the septal DG appear to contribute to certain aspects of the spatial learning process, 

whereas immature neurons of the temporal DG are involved in the anxiolytic-related effect of 

chronic antidepressant treatment (Wu and Hen, 2014). 

 

Neurogenesis in the adult brain across mammalian species 



Adult neurogenesis in brain germinal zones is widely conserved throughout phylogeny 

and although the consecutive steps from neuron production to their maturation share similarities 

across mammalian species, certain species-specific differences are noted with respect to the 

extent and rate of neurogenesis.  

Neurogenesis in the adult rodent brain is the most extensively studied and significant 

variations were found to exist in adult hippocampal neurogenesis between rodent species. 

Adult-born hippocampal granule cells achieve morphological and functional maturity earlier, 

have a better chance for survival and are more likely to participate in learning behavior in rats, 

compared to mice (Snyder et al., 2009).  

Evidence suggests that the neurogenic potential of the adult brain differs between 

primate and non-primate mammalian species. Comparisons between the rodent and primate 

brain showed that in the former the neurogenic potential of NSCs in brain niches remains 

unchanged throughout adulthood, in contrast to the latter, where neurogenesis is significantly 

reduced after the first postnatal years (Kohler et al., 2011; Isaev et al., 2019). Co-labeling of 

newborn BrdU+ cells with neuronal markers demonstrated that maturation of adult-born 

neurons in rodents is already achieved one month after BrdU injection, both in the olfactory 

bulb and the DG, whereas in the adult sheep hippocampus new neurons do not mature prior to 

four months after their genesis and in non-human primates the respective maturation time may 

exceed six months (Kohler et al., 2011; Brus et al., 2013).  

Canines are gyrencephalic animals with high translational value in the study of age-

related neurodegenerative disorders and affected hippocampal neurogenesis, as their aging 

brain exhibits many pathophysiological changes that resemble those of human brain. Numbers 

of newborn BrdU+ cells, proliferating Ki67-positive cells and DCX-expressing neuroblasts in 

the canine SGZ showed a significant age-related decrease which was directly correlated with 

cognitive decline (Siwak-Tapp et al., 2007). In a detailed study, we provided a description of 

the cellular and temporal characteristics of the sequential steps of neurogenesis in the adult 

canine hippocampus. Based on the evaluation of these data in conjunction with reports on the 

adult rodent and non-human primate DG neurogenesis, we assumed that dynamic changes in 

the numbers of canine proliferating radial glia-like NSCs and adult-born granule cells closely 

resemble these of other gyrencephalic species, although, to some extent, they also bear 

similarities with features of adult rat DG neurogenesis (Bekiari et al., 2020).   

Whether neurogenesis persists in remarkable levels in the adult human brain or is 

dramatically decreased after birth is at present a matter of controversy. The occurrence of 

newborn BrdU+ cells, that co-expressed neuron specific markers (NeuN, calbindin and neuron 

specific enolase/ NSE), was initially shown in the postmortem human hippocampus (Eriksson 

et al., 1998). Later tissue culture studies confirmed the multipotency of NSCs in the SVZ and 

SGZ and their ability for self-renewal, whilst their birth dating through quantification of their 
14C levels, revealed that almost 700 new neurons are added in each hippocampus per day 

(Spalding et al., 2013). A more recent unbiased stereological quantification of adult-born 

neurons in the whole human postmortem hippocampus reported similar numbers of neural 

precursor nestin-expressing cells, mature granule cells and glia in the DG of healthy juvenile, 

adult and elderly individuals, confirming that hippocampal neurogenesis not only exists, but is 

also maintained throughout the lifespan (Boldrini et al., 2018). What makes the adult different 

from the developing brain in humans is that adult-born neuroblasts in the SVZ migrate to the 

adjacent striatum to form new interneurons and do not move to the olfactory bulb, which is also 



different from equivalent data in rodents and other mammalian species. Contradictory to the 

above findings, are reports supporting that neurogenesis in the adult human brain is rare or 

completely absent. RNA-sequencing studies support the lack of neurogenesis in the adult 

human DG and immunohistochemical studies showed that DCX-positive cells of the adult 

human DG have mature morphology and thus do not represent newborn immature neurons, as 

previously believed (Sorrells et al., 2021). All these controversial findings, that may under- or 

over- estimate neurogenesis in the adult human brain, could be attributed to several 

methodological and technical limitations that are met when studying postmortem human brain 

tissue.  

 

Role of neurogenesis in the adult mammalian brain 

The expanding field of adult stem cell biology and brain neuroplasticity has provided 

invaluable insights to translational neuroscience and regenerative medicine. The ability of the 

brain to produce new neurons throughout postnatal development and in adulthood, underlies 

neuroplasticity, a fundamental capacity of the brain. This process involves the maintenance of 

brain integrity and at the same time the support of structural and functional alterations of the 

existing neuronal circuitry that enable the functional adaptation to the changing environment. 

Neuroplasticity underlies learning, memory and mood regulation functions, as well as repair 

and regeneration mechanisms after brain injury or neurodegenerative disorders. It has been 

proposed that adult neurogenesis is involved in complex tasks of improved cognitive flexibility, 

such as long-term spatial memory, pattern separation, behavioral modulation of stress, as well 

as metabolic and olfactory adaptations. Impairment of adult neurogenesis is associated with 

several pathologies and concomitant cognitive dysfunction (Anacker and Hen, 2017; Jurkowski 

et al., 2020). 

 

Regulation of neurogenesis in the adult mammalian brain 

Adult neurogenesis is regulated by the interaction of extrinsic and intrinsic factors. 

Studies on human brain have shown that the intrinsic factors may be epigenetic (DNA 

methylation, histone post-translational modifications and chromatin remodeling), 

transcriptional (transcription factor-mediated survival, proliferation, cell fate specification, 

differentiation and integration of NSCs and their progenies) and metabolic (reviewed by 

Niklison-Chirou et al., 2020). 

The extrinsic regulators of neurogenesis include various physiological, pathological, 

and pharmacological factors. Certain physiological stimuli, including environmental factors 

and exercise are presumed as positive regulators of neurogenesis that induce a neurogenic 

response of NSCs in germinal niches. On the contrary, aging and neurodegenerative disorders 

of the CNS have a negative effect on neurogenesis, leading to the cognitive decline of the 

elderly and pathological brain. Both processes lead to a decrease in neurogenesis, however, in 

normal aging the morphological and functional properties of newly formed neurons are not 

altered, whereas neurodegenerative mechanisms lead to considerable neuron death in the areas 

affected. A substantial body of evidence underlines the impact of aging, brain injury and 

neurodegenerative brain diseases on both neurogenesis and neuron death however, the present 



review deals only with the healthy, normally maturing brain, therefore the presentation of data 

on the aging and pathological brain is beyond our aims. 

With respect to the advantageous manipulation of adult neurogenesis, recent evidence 

suggests that early environmental enrichment results in long-lasting beneficial effects in 

hippocampal neurogenesis, behavior and epigenetics (Zocher et al., 2020). Even short-term 

enrichment periods were shown to increase cell proliferation in the hippocampus and improve 

performance in behavioral testing, although the magnitude of these effects decreased with age 

(Chandler et al., 2020).  

Additionally, aiming to investigate the effects of various experimental interventions on 

neurogenesis, we have previously quantified neurogenesis in the SVZ and SGZ, after 

intraventricular transplantation of adipose-derived mesenchymal stem cells in the adult rat 

brain. Our estimates showed that transplantation induced a significant increase of the number 

of newborn neurons (absolute number of BrdU+ cells) in both niches. In agreement with reports 

from other studies, this was attributed to the mobilization of endogenous NSCs, through the 

neuromodulatory action of exogenous stem cells on the microenvironment of adult brain 

germinal zones (Fig. 3), (Dori et al., 2017). 

 

Death of neurons in the mammalian brain during prenatal and early postnatal 

development 

Mammalian brain development involves a precise sequence of genetically controlled 

processes, such as NSCs proliferation, migration, differentiation and death. These 

developmental events are not unique to mammalian neural development, as they are underlined 

by key mechanisms conserved during evolution. A developmental overproduction of neurons 

takes place, a considerable number of which is driven to death before they reach maturity. This 

developmental cell death is ubiquitously under strict temporal and spatial regulation and is 

referred to as «programmed cell death» (PCD). Apoptosis, a term derived from the Geek word 

meaning “detaching and falling off” is the main type of developmental PCD, that involves the 

elimination of the excess number of cells. It is a key event in brain development, playing a 

crucial role in the control of cell numbers, quantitative matching, and the establishment of 

neuronal circuitry (Burek and Oppenheim, 1996). Apoptosis in neural development has been 

observed in a variety of invertebrate and vertebrate species, including insects, amphibians, fish, 

birds and mammals (see Yeo & Gautier 2004, for review). It is thus regarded as an evolutionary-

conserved developmental mechanism, aiming to optimize nervous system size and connectivity 

(Dekkers et al., 2013). This process is area-specific and related to the cell type. Genetic studies 

have shown that changes in the interplay between neuronal cell birth and death may have 

contributed to mammalian brain evolution (Vallender & Lahn 2006). 

 

Morphological features of apoptotic cell death 

Light and electron microscopic studies have revealed that the morphological features 

typical of apoptosis include internucleosomal DNA fragmentation, a pyknotic nucleus showing 

chromatin condensation and often rounded chromatin clumps, a shrunken cytoplasm with 

destructed cytoskeleton, intact plasma membrane blebbing and detachment of the cell from the 



surrounding tissue. At the end of the process, membrane-bound apoptotic bodies are cleared by 

phagocytic cells (Kerr et al., 1972). DNA fragmentation leads to the formation of low-

molecular weight DNA oligomers that can be visualized after DNA isolation and 

electrophoresis, or in situ by the use of the terminal deoxynucleotidyl-transferase-mediated 

dUTP-biotin nick end labelling (TUNEL) method. Apoptotic cell death is executed via 

molecular pathways that are mediated by the activation of caspases, a family of cysteine 

proteases. These have been suggested to mediate apoptosis in both NSCs and post-mitotic 

neurons (Hollville et al., 2019).  

 

Mechanisms of apoptotic cell death 

According to the Nomenclature Committee on Cell Death (NCCD), two molecular 

pathways of apoptosis are distinguished, the intrinsic, or mitochondrial, or Bcl-2-regulated 

pathway and the extrinsic or death receptor pathway (Galluzzi et al., 2018). Intrinsic apoptosis 

is triggered by various perturbations of the intracellular or extracellular microenvironment, 

including DNA damage, endoplasmic reticulum stress, reactive oxygen species overload, 

mitotic defects or growth factor elimination. Intrinsic apoptosis involves the irreversible 

mitochondrial outer membrane permeabilization, which is controlled by pro-apoptotic and anti-

apoptotic members of the Bcl2 apoptosis regulator protein family, a group of proteins sharing 

one to four Bcl2 homology (BH) domains. The pro-apoptotic members Bax and Bak are 

activated transcriptionally or post-translationally and constitute the main executors of the 

intrinsic pathway, as they are responsible for the formation of pores in the outer mitochondrial 

membrane. However, this is the case for postmitotic, differentiating neurons as proliferating 

progenitors undergo apoptosis in a Bax-independent pathway. Bax knock-out mice showed a 

total absence of apoptosis of postmitotic neurons in the CNS (Jung et al., 2008). Mice lacking 

both bax and bak genes displayed multiple developmental defects, including surplus cells 

within the CNS (Lindsten et al., 2000). Membrane permeabilization results in the release to the 

cytosol of apoptogenic factors, such as cytochrome c, HtrA2/OMI, Smac/Diablo, apoptosis 

inducing factor, and endonuclease G, that normally reside in the mitochondrial intermembrane 

space. The cytosolic cytochrome c binds to apoptotic peptidase activating factor 1 (Apaf-1) and 

pro-caspase 9 in a deoxyATP-dependent manner to form the apoptosome that activates caspase 

9, which then catalyzes the proteolytic activation of caspases 3 and 7, the executioners of 

apoptosis. As development proceeds, the intrinsic apoptotic pathway progressively declines, as 

implied by the reduction in Apaf-1 and caspase-3 gene expression and this may reflect an anti-

apoptotic protection mechanism in the mature brain (Galluzzi et al., 2018).  

Extrinsic apoptosis is triggered by various perturbations of the extracellular 

microenvironment mediated either by death receptors, whose activation depends on ligand- 

binding or dependence receptors, which are activated when the levels of their cognate ligands 

drop below a specific threshold. This results in recruitment and activation of caspase-8 or -10, 

through the death-inducing signaling complex (DISC) comprising the FAS-associated death 

domain protein (FADD) and/or TNFR-associated death domain protein (TRADD). Activated 

caspase-8 then activates downstream effector caspases by proteolytic cleavage of the BH3 

interacting domain death agonist (Bid) to produce the truncated form tBid, which translocates 

to mitochondria to induce Bax activation (Galluzzi et al., 2018). The family of dependence 

receptors during brain development includes the neurotrophin receptor TrkA for nerve growth 

factor (NGF) and TrkC for neurotrophin-3 (NT-3) which may initiate apoptosis by the 



proteolysis of the neurotrophin receptor p75NTR for BDNF, with which they are associated. A 

number of studies have revealed that the survival of most brain neurons depends not only on 

single growth factors, but also on various components of the cell death machinery that play a 

critical role in the establishment of neuronal circuitry (Nikoletopoulou et al., 2010; Dekkers et 

al. 2013).  

It has been well documented that the apoptotic elimination of surplus cells in the CNS 

during development is biphasic, involving different cell populations and serving different 

functions: one phase occurs prenatally and involves proliferating neural progenitors and newly 

postmitotic neuroblasts, and the other postnatally, affecting exclusively postmitotic neurons in 

the process of their incorporation  into neuronal circuits.  

 

Apoptotic neuron death in the mammalian brain during prenatal development  

The earliest apoptotic cell death in the mammalian CNS begins during neurulation, 

within the neural ectoderm mainly at the anterior neural ridge, its rostral borders with superficial 

ectoderm. The anterior neural ridge acts as an organizer by producing Fgf8 morphogen, that 

leads to the formation of the neural tube, the primordial brain and spinal cord. Dying cells 

spread in the presumptive hindbrain neural folds during and after the neural tube closure (Yeo 

& Gautier 2004; Yamaguchi and Miura, 2015). The neuroepithelium consists of proliferating 

NSCs that exit the cell cycle and begin specification to neuronal lineage only after neural tube 

closure. Apoptosis at these early stages of prenatal ontogenesis, being associated with 

populations of undifferentiated NSCs and neural progenitors, reflects a measure of quality 

control and serves the purpose of the initial morphogenetic sculpting of the CNS. It has been 

suggested that apoptosis induces tissue remodeling during neuroepithelial morphogenesis, and 

modulates the speed of neural tube closure (Ambrosini et al., 2017). Inhibition of apoptosis in 

transgenic mice disturbs neural morphogenesis, and can lead to neural tube closure defects. In 

apoptosis-deficient mutant mice, Fgf8-expressing cells persist in the anterior neural ridge, 

impairing gene expression in the ventral forebrain and leading to brain malformations 

(Nonomura et al., 2013).  

In subsequent embryonic stages, high rates of apoptosis were noted within the brain 

SVZ and involved the daughter cells of early IPs, destined to become cerebral cortical neurons 

(Thomaidou et al., 1997). During neurogenic divisions of early IPs, asymmetric apoptosis of IP 

daughter cells occurs in synchrony to the different modes of division for clonal specification. 

This implies that while one daughter cell proceeds with division and differentiation, the other 

cell dies. Considering that the cell fate specification of early IP clones is mediated in relation 

to the fine balance between cell birth and death in the germinal zones, it has been hypothesized 

that these apoptotic binary death events might represent a mechanism regulating clonal 

expansion (Mihalas and Hevner, 2018). The significance of the linkage of binary apoptosis to 

asymmetric cell divisions is not fully clarified and requires further investigation, however 

apoptosis is to date regarded as an evolutionary conserved asymmetric fate choice of many IP 

daughter cells (Hevner, 2019). 

What determines the dilemma between life and death in cells during early neural 

development? It has been documented that diverse and often conflicting developmental 

processes are regulated by the same classes of molecules. Several factors that regulate cell 



cycle, patterning, growth, cell fate determination and terminal differentiation are also involved 

in the control of cell death during early neural development. In the proliferating 

neuroepithelium of the developing rat cerebral cortex apoptosis is related to the progression of 

the cell cycle (Thomaidou et al., 1997). Pharmacologically induced mitotic delay induces 

apoptosis in progeny of neural progenitors (Pilaz et al., 2016). It is the balance between cell 

proliferation and death, as well as the coupling mechanisms of these processes that eventually 

control cell numbers (Juraver-Geslin and Durand, 2015). It has been proposed that the 

orchestrated action of a variety of morphogens regulates proliferation and apoptosis in the 

developing brain. Bone morphogenetic proteins (BMPs) are involved in cell fate determination 

in the neural tube, the maintenance of proliferation, mitotic exit, and subsequent differentiation 

of neural precursors. Wnt proteins are involved in the regulation of the balance between 

apoptosis and proliferation of neural progenitors. Wnt-mediated patterning of the neural tube 

occurs downstream of the BMP pathway (Panchision and McKay, 2002). Initial studies in the 

chick embryo that were later extended to mice have shown that Sonic hedgehog (Shh) protein 

acts as a graded signal to control the patterning and neural progenitor cell fate determination in 

the posterior ventral neural tube (Placzek and Briscoe, 2018). Cells engineered to produce Shh 

protein have an anti-apoptotic role at the early stages of brain morphogenesis in in situ grafts 

and transplantation experiments (Charrier et al., 2001). In fact, during neural morphogenesis 

all cells possess the apoptotic machinery, but require anti-apoptotic signals in order to survive. 

Many neuron survival pathways eventually converge on pro-apoptotic and anti-apoptotic 

members of Bcl2 family and caspases (Pfisterer and Khodosevich, 2017). 

 

Apoptotic neuron death in the mammalian brain during postnatal development  

The critical period during which neurons in the developing brain are prone to cell death 

is when they start to establish synaptic contacts. At this stage, cell survival depends on neuronal 

activity via the action of neurotransmitter input which regulates the expression of growth 

factors (Dekkers et al. 2013). Blocking of glutamate NMDA receptors, or the excessive 

activation of gamma-aminobutyric acid (GABA) receptors, during the period of 

synaptogenesis, induces neuronal apoptosis in the developing mammalian brain (Ikonomidou, 

2009). However, apoptosis of a large number of interneurons is induced by intrinsic 

mechanisms that are independent of extrinsic triggers (Dekkers and Barde, 2013). It thus 

appears that the regulation of developmental apoptosis is neuron type-specific. Apoptosis of 

immature neurons that are generated in the brain during prenatal development is more profound 

around the time of birth. The critical period for survival of neurons born postnatally lasts 

approximately four weeks and thereafter they become resistant to cell death (Pfisterer and 

Khodosevich, 2017).  

We have undertaken a series of studies in which we employed caspase 3 

immunohistochemistry and the TUNEL method to investigate apoptosis in the rodent brain 

during postnatal development. Our results demonstrated that in all brain areas examined, a 

number of cells die during the first month after birth, showing early high frequency periods. 

Using double labeling with cell-specific markers and electron microscopy we confirmed that 

this death is apoptotic and involves postmitotic neurons (Figs 4 and 5). In the basal forebrain 

(BF), apoptotic cells were present during the first two postnatal weeks, showing two peaks, at 

postnatal day (P) 1 and at P5 (Sophou et al., 2006). In the striatum, apoptotic cells were 

observed during the first four postnatal weeks. Their frequency was high one week after birth 

https://www.sciencedirect.com/science/article/pii/S0012160604005020?via%3Dihub#bib103


and showed a single peak at P5 (Mellios et al., 2009). In the dorsal lateral geniculate nucleus 

(dLGN) of the thalamus, apoptosis occurs neonatally, with the highest density of dying cells at 

P1 (Zacharaki et al., 2010). Our data together with evidence from other studies suggest that 

apoptosis is an early postnatal event and is executed within the same developmental time 

window across brain areas. Indeed, in the SVZ, the proliferative layer of the developing cerebral 

cortex, apoptosis is most prominent at birth, involving one in every two newly generated cells 

(Thomaidou et al., 1997). The majority of pyramidal neurons in the rodent cerebral cortex 

undergo area- and layer-specific apoptosis between P2 and P5, whilst most interneurons die 

mainly between P5 and P10 (Wong and Marín, 2019). In the hippocampus, active caspase-3 

expressing postmitotic neurons are mainly detected from P2 and reach maximum numbers at 

P7 (Liu et al., 2008). In the cerebellar cortex, neuronal apoptosis occurs between P0 and P14, 

with layer-specific peaks during the first nine postnatal days (Cheng et al., 2011). In the external 

granular layer, apoptosis occurs in two phases, one affecting the precursors and pre-migratory 

and the other the mature, migrating granule cells, whilst Purkinje cells die in the course of their 

generation and migration during the first postnatal week (Lossi et al., 2018). Apoptosis of 

immature dopaminergic neurons in the substantia nigra is also biphasic, with one peak at P2 

and a second at P14 (Oo and Burke, 1997). 

The temporal pattern of apoptosis in all brain areas examined parallels critical 

developmental events that involve the morphological and functional differentiation of 

postmitotic neurons and the establishment of reciprocal synaptic connections. Cholinergic 

projection neurons of the BF are generated in the embryonic lateral ganglionic eminence, 

innervate their cortical targets already at birth and acquire mature features during the early 

postnatal period (Dinopoulos et al., 1989). This is also the period of maximal secretion of NGF 

that binds to the dependence receptor TrkA which is expressed in a population of cholinergic 

neurons in the BF (Sobreviela et al., 1994). Striatal GABAergic projection neurons and 

cholinergic interneurons are generated in the lateral ganglionic eminence during embryonic life, 

mature after birth (Rymar et al., 2004), and establish their afferent synaptic inputs early in 

postnatal life (Antonopoulos et al., 2002). Within this period, the dependence receptors TrkB 

and TrkC are expressed in the striatum (Escandón et al., 1994), and cortical-, as well as 

midbrain-derived neurotrophins are expressed at high levels supporting immature striatal 

neuron survival (Friedman et al., 1991; Baydyuk et al., 2013). Neurons in the dLGN are born 

during embryonic development and undergo an initial growth-burst during the first postnatal 

week (Parnavelas et al., 1977), when neuronal connections are formed through enhanced 

synaptogenesis (Kageyama and Robertson, 1993). It is noteworthy that apoptosis occurs during 

the pre-critical period of key developmental events, such as the organization of the 

geniculocortical mapping. These events in turn contribute to the activation of the critical period 

of experience-modulated plasticity (Huberman, 2007). 

Collectively, these data strongly suggest that the most profound period of apoptosis 

correlates with the development of the brain cytoarchitecture, morphological differentiation of 

neurons, neurotransmitter expression and organization of functional neuronal networks. After 

neuronal maturation and incorporation into functional circuits is complete, the apoptotic 

pathway is inhibited. This is consistent with a recent notion that challenges the classical 

“neurotrophic theory” and suggests that neuronal activity that controls the expression of growth 

factors and apoptotic proteins, the neurotransmitter input and cell-intrinsic mechanisms related 

to the apoptotic machinery are the regulators of apoptosis in the postnatal brain (Dekkers et al., 

2013). Furthermore, it has been suggested that developmental reprogramming pathways restrict 



the apoptotic machinery in post-mitotic cells at molecular, transcriptional and metabolic levels 

(Hollville et al., 2019). Apoptosis may serve to match neuron numbers to the size of their target 

field and their afferent input, a process referred to as “systems matching” (Wong and Marín, 

2019). Postnatal apoptosis affects proliferating precursors, and to a larger extent, postmitotic, 

postmigratory, immature neurons which have been born at embryonic stages. According to 

previous reports, in proliferating or migrating populations, apoptosis may control cell numbers 

by eliminating excess, or defective, or misplaced cells (Wong and Marín, 2019). 

In order to investigate how neuronal activity through neurotransmitter action affects 

the survival and death of neurons during this critical period of postnatal development, we 

performed lesions of connections of the rat brain areas examined previously, at around the time 

these connections are formed and at later stages, when neuronal circuits are fully mature 

(Sophou et al., 2006; Mellios et al., 2009; Zacharaki et al., 2010). The results of these studies 

showed that destruction of neuronal circuits during development does not induce consistent 

responses across different brain areas. In particular, neonatal cortical lesions affect the survival 

and differentiation of neurons in the striatum and the dLGN, but does not alter the viability of 

cholinergic projection neurons in the BF (Fig. 4). This regional specificity in lesion-induced 

apoptosis may be attributed to the neuron-type, the extent of connectivity affected, and the 

differential expression of dependence and non- dependence receptors in these areas.  

It is noteworthy that de-afferentation of striatal and dLGN neurons at birth induces an 

apoptotic wave that is most dramatic one week post-lesion. The effect on cortical lesion-

induced apoptosis of striatal and dLGN neurons is similar after destruction of 

catecholaminergic and retinal afferent systems, respectively. In contrast, lesions performed at 

later stages of development, when naturally occurring apoptosis is normally restricted, do not 

induce cell death in striatal neurons. The time window of neuronal vulnerability for dLGN 

neurons is similar, but spans throughout the pre-critical period before eye opening. These data 

show a developmentally-dependent ability of lesions of synaptic connections to induce 

neuronal apoptosis, implicating the existence of a crucial period during which connectivity-

induced neuronal activity is essential for survival. This is consistent with various hypotheses 

that death-inducing factors are preferentially expressed in young neurons, while mature neurons 

acquire anti-apoptotic protective properties against any external stress (Pfisterer and  

Khodosevich, 2017). 
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Figure legends 

 

Fig. 1: Neurogenic niches of the adult mammalian brain.The SVZ of the lateral 

ventricles (A) and the SGZ of the hippocampal dentate gyrus (B) are the two principal 

neurogenic niches, shown to contain clusters of proliferating NSCs and their progenies 

that have incorporated the thymidine analogue bromodeoxyuridine (BrdU). Scale bars, 

100μm. 



 

Fig. 2: Radial glia-like NSCs and their neuronal and glial progenies in the 

hippocampal DG of the adult rat brain. Brdu+ radial glia-like NSCs (arrowheads in 

A-C) divide symmetrically or asymmetrically and give rise to new neurons (A), new 

astrocytes (B) and new radial glia-like NSCs (C). Newborn neurons and astrocytes 

express stage-specific markers during their sequential differentiation and maturation 

phase. Differentiating newborn neurons express the marker DCX (D), which is 

followed by expression of the more mature neuronal marker NeuN (E). Mature newborn 

granule cells are immunoreactive for calbindin (F) and have developed NMDA 

receptors (G). Mature newborn astrocytes express the astrocytic marker S100B (H). 

Scale bars, 10 μm. (re-used with permission of John Wiley and Sons, from Bekiari et 

al., Hippocampus 25:511-523, 2015). 

 

Fig. 3: Experimentally-induced neurogenesis in the SVZ of the adult rat brain. 

After intraventricular transplantation of mesenchymal stem cells, numerous 

Brdu+NSCs are localized in the SVZ (A) and comprise RGCs with astrocytic features, 

expressing GFAP (arrowhead in B). Scale bars, 50μm. 



 

Fig. 4: Photomicrographs and electron micrographs of apoptotic cells in the rat 

brain, during normal development and following lesions of connections. The 

distribution pattern of TUNEL+ cells in the basal forebrain at birth (A)was not altered 

following neonatal lesions of connections and examined 1 day post-lesion (B), in 

contrast to the dorsal lateral geniculate nucleus, in which the total number of TUNEL+ 

cells increased dramatically 1 day after neonatal lesions (D), compared to their number 

in the normal, developing brain (C).The distribution pattern of TUNEL+ cells in the 

striatum at postnatal day 1 (E) was not altered, but the total number of TUNEL+ cells 

increased following neonatal lesions of connections and examined 1 day post-lesion 

(F). TUNEL+ cells displayed typical ultrastructural features of apoptosis. Cells were 

shrunken with a condensed cytoplasm and a pyknotic nucleus containing two chromatin 

clumps (G), or displaying a homogenously dark nucleus and a cytoplasm with 

condensed aggregates (H). Scale bars, 50μm (A-F); 0.5μm (G and H). (excerpts with 



permission from Sophou et al., Eur J Neurosci. 24:573-585, 2006; Zacharaki et al., Brain 

Research, 1344:62-76, 2010). 

 

Fig. 5: Photomicrographs of double-labeled apoptotic neurons in the developing 

dLGN. Normal animals at P1 (A, B, C) and neonatally lesioned animals at post-lesion 

day 1 (D, E, F). Merged images (C, F) depict TUNEL+ cells (A, D) that are also labeled 

for NeuN, revealing their neuronal nature (B, E). Scale bar, 20 μm. (re-used with 

permission from Zacharaki et al., Brain Research, 1344:62-76, 2010). 

 




